Efek fotolistrik adalah pengeluaran elektron dari suatu permukaan (biasanya logam) ketika dikenai, dan menyerap, radiasi elektromagnetik (seperti cahaya tampak dan radiasi ultraungu) yang berada di atas frekuensi ambang tergantung pada jenis permukaan. Istilah lama untuk efek fotolistrik adalah efek Hertz
(yang saat ini tidak digunakan lagi). Hertz mengamati dan kemudian
menunjukkan bahwa elektrode diterangi dengan sinar ultraviolet
menciptakan bunga api listrik lebih mudah.
Efek fotolistrik membutuhkan foton dengan energi dari beberapa
electronvolts sampai lebih dari 1 MeV unsur yang nomor atomnya tinggi.
Studi efek fotolistrik menyebabkan langkah-langkah penting dalam
memahami sifat kuantum cahaya, elektron dan mempengaruhi pembentukan
konsep Dualitas gelombang-partikel. fenomena di mana cahaya mempengaruhi
gerakan muatan listrik termasuk efek fotokonduktif (juga dikenal
sebagai fotokonduktivitas atau photoresistivity ), efek fotovoltaik ,
dan efek fotoelektrokimia .
sebelum membahas lebih jauh tentang efek fotolistrik, akakn kita ulas terlebih dahulu mengenai foton. foton merupakan paket-paket energi (buntelan energi) dan merupakan partikel dari cahaya. masih ingatkah dengan dualisme gelombang partikel?dari sana dapat kita pahami bahwa cahaya bisa bersifat sebagai gelombang dan partikel.
Foton dari sinar memiliki energi karakteristik yang ditentukan oleh
frekuensi cahaya. Dalam proses photoemission, jika elektron dalam
beberapa bahan menyerap energi dari satu foton dan dengan demikian
memiliki lebih banyak energi daripada fungsi kerja (energi ikat
elektron) dari materi, itu dikeluarkan. Jika energi foton terlalu
rendah, elektron tidak bisa keluar dari materi. Peningkatan intensitas
sinar meningkatkan jumlah foton dalam berkas cahaya, dan dengan demikian
meningkatkan jumlah elektron, tetapi tidak meningkatkan energi setiap
elektron yang dimemiliki. Energi dari elektron yang dipancarkan tidak
tergantung pada intensitas cahaya yang masuk, tetapi hanya pada energi
atau frekuensi foton individual. Ini adalah interaksi antara foton dan
elektron terluar.
Elektron dapat menyerap energi dari foton ketika disinari, tetapi
mereka biasanya mengikuti prinsip "semua atau tidak" . Semua energi dari
satu foton harus diserap dan digunakan untuk membebaskan satu elektron
dari atom yang mengikat, atau energi dipancarkan kembali. Jika energi
foton diserap, sebagian energi membebaskan elektron dari atom, dan
sisanya dikontribusi untuk energi kinetik elektron sebagai partikel
bebas.
Tidak ada elektron yang dilepaskan oleh radiasi di bawah frekuensi
ambang, karena elektron tidak mendapatkan energi yang cukup untuk
mengatasi ikatan atom. Elektron yang dipancarkan biasanya disebut fotoelektron dalam banyak buku pelajaran.
Efek fotolistrik banyak membantu penduaan gelombang-partikel, dimana sistem fisika (seperti foton
dalam kasus ini) dapat menunjukkan kedua sifat dan kelakuan
seperti-gelombang dan seperti-partikel, sebuah konsep yang banyak
digunakan oleh pencipta mekanika kuantum. Efek fotolistrik dijelaskan secara matematis oleh Albert Einstein yang memperluas kuanta yang dikembangkan oleh Max Planck.
Hukum emisi fotolistrik:
- Untuk logam dan radiasi tertentu, jumlah fotoelektro yang dikeluarkan berbanding lurus dengan intensitas cahaya yg digunakan.
- Untuk logam tertentu, terdapat frekuensi minimum radiasi. di bawah frekuensi ini fotoelektron tidak bisa dipancarkan.
- Di atas frekuensi tersebut, energi kinetik yang dipancarkan fotoelektron tidak bergantung pada intensitas cahaya, namun bergantung pada frekuensi cahaya.
- Perbedaan waktu dari radiasi dan pemancaran fotoelektron sangat kecil, kurang dari 10−9 detik.

di mana h adalah konstanta Planck dan f adalah frekuensi foton. Lambang φ adalah fungsi kerja (kadang dilambangkan W), yang memberikan energi minimum yang diperlukan untuk memindahkan elektron terdelokalisasi dari permukaan logam. Fungsi kerja memenuhi


Hubungan antara arus dan tegangan diterapkan menggambarkan sifat efek fotolistrik. Untuk diskusi, sumber cahaya menerangi P piring, dan lain elektrode pelat Q mengumpulkan setiap elektron yang dipancarkan. Kami bervariasi potensial antara P dan Q dan mengukur arus yang mengalir dalam sirkuit eksternal antara dua lempeng.
Jika frekuensi dan intensitas radiasi insiden adalah tetap, arus fotolistrik meningkat secara bertahap dengan peningkatan potensi positif sampai semua foto elektron yang dipancarkan dikumpulkan. Arus fotolistrik mencapai nilai saturasi dan tidak meningkatkan lebih lanjut untuk peningkatan potensi positif. Arus saturasi tergantung pada intensitas pencahayaan, tapi tidak panjang gelombang.
Jika kita menerapkan potensi negatif ke piring Q sehubungan dengan plat P dan secara bertahap meningkatkan itu, berkurang saat fotolistrik sampai nol, pada potensial negatif tertentu di piring Q. potensi negatif minimum yang diberikan ke piring Q di mana arus fotolistrik menjadi nol disebut potensial menghentikan atau memotong potensial
Untuk frekuensi yang diberikan radiasi insiden, potensi berhenti adalah independen dari intensitasnya.
Untuk frekuensi yang diberikan radiasi insiden, potensi Vo berhenti berhubungan dengan energi kinetik maksimum fotoelektron yang hanya berhenti dari T. piring mencapai Jika m adalah massa dan v adalah kecepatan maks maksimum fotoelektron dipancarkan, maka



0 comments:
Post a Comment
Silahkan Tinggalkan Saran dan Kritik Anda